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Regression and Classification of Alzheimer’s
Disease Diagnosis Using NMF-TDNet Features

From 3D Brain MR Image
Huan Lao and Xuejun Zhang

Abstract—With the development of deep learning and
medical imaging technology, many researchers use convo-
lutional neural network(CNN) to obtain deep-level features
of medical image in order to better classify Alzheimer’s
disease (AD) and predict clinical scores. The principal com-
ponent analysis network (PCANet) is a lightweight deep-
learning network that mainly uses principal component
analysis (PCA) to generate multilevel filter banks for the
centralized learning of samples and then performs bina-
rization and generates blockwise histograms to obtain im-
age features. However, the dimensions of the extracted
PCANet features reaching tens of thousands or even hun-
dreds of thousands, and the formation of the multilevel filter
banks is sample data dependent, reducing the flexibility of
PCANet. In order to solve these problems, in this paper, we
propose a data-independent network based on the idea of
PCANet, called the nonnegative matrix factorization tensor
decomposition network (NMF-TDNet). Specifically, we use
nonnegative matrix factorization (NMF) instead of PCA to
create multilevel filter banks for sample learning, then uses
the learning results to build a higher-order tensor and per-
form tensor decomposition (TD) to achieve data dimension-
ality reduction, producing the final image features. Finally,
our method use these features as the input of the support
vector machine (SVM) for AD classification diagnosis and
clinical score prediction. The performance of our method
is extensively evaluated on the ADNI-1, ADNI-2 and OASIS
datasets. The experimental results show that NMF-TDNet
can achieve data dimensionality reduction and the NMF-
TDNet features as input achieved superior performance
than using PCANet features as input.

Index Terms—Alzheimer’s disease (AD), deep learning,
PCANet, NMF-TDNet, regression and classification.
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I. INTRODUCTION

A LZHEIMER’S disease (AD) is a neurodegenerative dis-
ease commonly observed in elderly adults that has a long

incubation period. Over time, the disease gradually worsens,
the patient’s neurons are gradually destroyed, and his or her
memory and cognitive abilities gradually decline, eventually
leading to death [1]. There are 50 million people suffering from
AD worldwide. With the aging of the global population, the
number of AD patients are expected to double by 2050 [2], [3].
Although many drugs are currently available for treating AD,
the efficacy of these drugs can only slow its development; none
of them can completely treat AD or prevent the progression of
the disease [4]. Many studies have shown that in the early stage
of the disease, the patient’s cognitive impairment will be at a
level between the cognitive normal state (CN) and the AD state,
which is called the mild cognitive impairment state (MCI). At
present, many researchers hope that patients can be identified
when they are in the MCI stage and then take effective measures
to prevent further progression of the disease [5]. Therefore, the
early diagnosis of AD is particularly important, and determining
the stage of the disease has become the focus of current research.

In recent years, medical imaging technology has developed
rapidly. Its purpose is to provide doctors and researchers with
another perspective for disease diagnosis by analyzing medical
images, further verifying the correctness of doctors’ diagnosis
and providing additional data to encourage further research and
analysis. Different medical imaging techniques obtain medical
images via different modalities, such as magnetic resonance
imaging (MRI) [6], [7], single-photon emission computed to-
mography (SPECT) [8], [9] and positron emission tomography
(PET) [10]. These different imaging modalities can help with
the noninvasive examination of changes in brain structure and
metabolism and the determination of biomarkers of AD. Many
studies have established MRI as one of the most standardized
and widely used imaging techniques in clinical practice. The
most obvious feature of AD pathology is the loss of neurons,
followed by brain atrophy, from the characteristic areas of AD
(such as the hippocampus and amygdala) to the entire cortical
area; these changes can be identified on MRI [11]–[15]. These
observable structural changes occur before the first signs of
substantial cognitive ability reduction are observed. Therefore,
the use of MRI-based computer-aided diagnosis (MRI-CAD)
for identifying the AD stage of patients has become the focus of
much current research.

The application of deep learning in medical imaging has
attracted widespread attention in academia, and the classification
of medical images is one of the main research directions of
scholars at home and abroad. Therefore, the combination of
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deep learning and MRI-CAD has become the focus of much
research. Traditional deep learning models include convolu-
tional neural networks (CNNs), deep belief networks (DBNs),
stacked autoencoders (SAEs), etc. CNNs can better learn the
deep-level features of images, which has become the focus of
studies on medical image diagnosis [16]–[18]. Suk et al. [19],
[20] developed an autoencoder (AE) network-based model for
AD diagnosis and used several complex support vector machine
kernels for classification. Payan et al. [21] used an AE and a
3D-CNN to construct a method that can predict the disease state
of AD. The authors of [22] also proposed a 3D-CNN method to
achieve AD classification by extracting AD disease biomarkers.
Choi and Jin [23] predicted cognitive decline in the process of
AD conversion by using an in-depth method based on a CNN.
With the continuous development of CNN technology for CAD,
image analysis has transitioned from traditional manual analysis
to computer-aided analysis. The key factor for the success of
a CNN is the ability to automatically discover and learn the
abstract representation of data established in multiple stages,
where each stage represents an intermediate-level representation
developed from the previous stage. Despite the success of CNNs
in medical imaging, certain aspects of their feature learning
mechanisms and optimal network configurations still pose a
great challenge to researchers [24], such as the design of the
appropriate network architecture and the choice of the correct
configuration and parameters (such as the number of layers, filter
size, and pooling function). To overcome the weaknesses of
CNNs, Chan et al. [25] proposed a lightweight unsupervised
deep learning network called the principal component analysis
network (PCANet). The network structure of PCANet is very
simple. Firstly, use the principal component analysis (PCA)
filters to process the input image by layer-by-layer convolu-
tion, then performs binarization and calculates block-by-block
histograms, and finally obtains a long histogram feature vector
as the image features. However, there are two problems with
PCANet. The first is that the dimensions of the extracted PCANet
features reaching tens of thousands or even hundreds of thou-
sands. With the development of the Big Data era, the practical
application of this technique must contend with high storage
costs and low calculation efficiency. Second, the formation of
multilevel PCA filter banks depends on the sample data, reducing
the flexibility of PCANet. In this paper, we propose a network
structure combining nonnegative matrix factorization (NMF)
and tensor decomposition (TD) based on the network structure
of PCANet called the nonnegative matrix factorization ten-
sor decomposition network (NMF-TDNet). Specifically, in this
network, we use NMF instead of PCA to construct multilevel
filter banks to process the input image by layer-by-layer convo-
lution, and then use convolution results to build a higher-order
tensor, finally, TD to achieve data dimensionality reduction to
obtain the final image features. NMF-TDNet has the following
advantages:

a) NMF is an efficient data dimensionality reduction
technique that has better local learning representation
than PCA. It reduces high-dimensional random patterns
to low-dimensional random patterns while keeping the
information unchanged as much as possible. The basis
of this simplification is the estimation of the essential
structure in the data. Therefore, we use the base matrix
obtained from NMF as the multilevel filter banks to
convolve the image and obtain its basic features.

b) A tensor is used to store the convolution results, retaining
the structural information of the image data.

c) TD is essentially a higher-order generalization of ma-
trix decomposition, decomposing a higher-order tensor
into a core tensor and three orthogonal factor matrices.
The factor matrices can effectively reflect the topological
structure of the original tensor. In this study, we subject the
convolution results to Tucker decomposition, which can
well perform image dimensionality reduction processing,
sparse data filling and implicit relationship mining.

d) The 3D MR images of the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) and Open Access Series
of Imaging Studies (OASIS) datasets are used as data
sources to verify the experimental performance of our
method. The experimental results show that NMF-TDNet
can reduce the dimensionality of the data (resulting in
features with only a few hundred dimensions, far less
than the hundreds of thousands of dimensions obtained
from PCANet), which reduces storage costs and time
consumption. At the same time, in the two tasks of
AD/CN/MCI classification and clinical score prediction,
the performance of using NMF-TDNet features as sup-
port vector machine (SVM) input is better than PCANet
features as input.

The rest of the paper is organized as follows. In Section II,
we review the theoretical basis and algorithm of PCANet. In
Sections III and IV, we introduce the studied datasets and our
proposed NMF-TDNet method, respectively. In Section V, our
proposed NMF-TDNet method is evaluated (including disease
classification experiments, clinical scoring regression experi-
ments and parameter analyses) and compared with state-of-the-
art methods. In Section VI, we discuss the difference between
NMF and PCA and analyze the main limitations of the current
study. The paper is finally concluded in Section VII.

II. PRELIMINARY

Chan et al. [25] proposed PCANet, which is based on unsuper-
vised learning. It uses the basic PCA filters as convolutional layer
filters and then uses binary hash coding and block histogram
statistics at the output layer to obtain the final features of the
image. PCANet is divided into three steps: first stage, second
stage and output layer.

A. First Stage

Suppose there areN input 3D MR images Ii(i = 1, 2, . . ., N)
with a size of m× n× d. Each slice xi,j of Ii is divided into
small overlapping patches of size k1 × k2, and then all patches
are mapped into vectors

xi,j = [xi,j,1, xi,j,2, . . ., xi,j,p] ∈ Rk1k2×p

p = 1, 2, . . ., (m− k1 + 1)(n− k2 + 1)
(1)

In addition, the patch mean is removed from each patch to obtain

xi,j = [xi,j,1, xi,j,2, . . ., xi,j,p] ∈ Rk1k2×p (2)

All slices of Ii are subjected to the above procedure and then
concatenated to produce

xi = [xi,1, xi,2, . . ., xi,d] ∈ Rdk1k2×p (3)
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For all input 3D MR images, each image can be used to construct
the same matrix, which are then combined into one matrix to
obtain

X = [x1, x2, . . ., xN ] ∈ Rdk1k2×Np (4)

Then, PCA is used to learn the filters in the first stage. Assuming
that the number of filters in this stage isL1, the filters are denoted
as W 1

l

V = XXT ∈ Rdk1k2×dk1k2 (5)

W 1
l = mat(ql(V )) ∈ Rdk1k2×L1 , l = 1, 2, . . ., L1 (6)

where ql(V ) denotes the lth principal eigenvectors of covariance
matrix V . After convolution learning with the first stage filters
W 1

l , the N input images can be expressed as

yi = (W 1
l )

T ∗ xi, i = 1, 2, . . ., N (7)

where * denotes 2D convolution.

B. Second Stage

This stage repeats the same processes as the first stage with
two differences. First, the input images to this stage are theL1 ×
N images from the first stage filter convolution results. Second,
the L1 ×N images are first zero-padded prior to the creation
of the overlapping patches to ensure they are the same size as
the original 3D MR image slices. Similar to the first stage, after
convolution learning with the second stage filters, the L1 ×N
input images can be expressed as

Ol
i = (W 2

l )
T ∗ yi, i = 1, 2, . . ., N × L1 (8)

C. Output Layer

Each 3D MR image has L2 × L1 convolution results after
the first and second stages. First, a Heaviside-like step function
H(.) is used to convert the L2 output of the second stage Ol

i

back into a single integer in the range [0, 2L2−1], and each pixel
is encoded by the following function:

T l =

L2∑
l=1

2l−1H(Ol
i) (9)

The mathematical representation of the function H(.) is

H(x) =

{
1, x ≥ 0
0, x < 0

(10)

Then, T l is partitioned into p nonoverlapping blocks B, and the
histogram of each block B is computed with 2L2 values. Then,
the histograms of all blocks B are concatenated into one vector
Bhist(T l). Finally, L1 histograms can be obtained and placed
into a vector as an image featureF ; the formula is shown in (11).

F = [Bhist(T 1), Bhist(T 2), . . ., Bhist(T l)] (11)

According to these procedures, we can see that like most CNN
models, when using PCANet to learn the features of the training
data, the network parameters must be provided beforehand, such
as the number of layers, the block size and the number of filters.
However, the number of parameters is much smaller than that
required for a CNN model, and the filter learning in PCANet
does not involve regularization parameters or require a numerical
optimization solver. Therefore, the training complexity is much

lower than that of the CNN model, so PCANet is called a CNN-
based simplification deep-learning model. However, the learning
of the PCANet filters also has some shortcomings: among them,
PCANet relies on training data to learn the multistage filters
(which are constructed by calculating the sum of the covariances
of all input images). Thus, the formation of the multistage PCA
filters is data dependent, reducing the flexibility of PCANet.
Detailed experiments demonstrating this henomenon are given
in the discussion section.

III. MATERIALS

Three datasets consisting of 1022 subjects are used in this
study, including 1) the ADNI-1 dataset, 2) the ADNI-2 dataset,
and 3) the OASIS dataset.

1) Adni: The ADNI was launched in 2003 to connect re-
searchers with research data (adni.loni.usc.edu). The ADNI
dataset is divided into four stages, ADNI-1, ADNI/GO, ADNI-2
and ADNI-3, and collects a large amount of MRI and PET im-
ages, genetic data, blood biochemical indicators and CSF data.
The primary goal of the ADNI is to verify and determine the re-
lationship between the collected data, determine the progression
of AD, and provide a basis for the early diagnosis and treatment
of AD. ADNI’s research protocol was approved by the local
institutional review board. The study protocols corresponding
to the ADNI-1 and ADNI-2 datasets are described as follows.
The ADNI-1 stage recruited more than 800 adults, including
CN subjects, AD subjects and MCI subjects, to participate in
the study, with an age range of 55-90 years (all subjects signed
written informed consent). Specifically, 200 CN subjects were
observed for 3 years, and 400 MCI subjects and 200 AD subjects
were followed up for 3 years and 2 years, respectively. The
ADNI-2 stage included 650 newly enrolled subjects. In addition,
ADNI-2 followed approximately 700 subjects from ADNI-1 and
ADNI/GO for five years.

In our method, the baseline images of 778 subjects from the
ADNI-1 and ADNI-2 stages are mainly selected for the exper-
iments. To ensure the independence of samples, subjects that
appear in both ADNI-1 and ADNI-2 were removed from ADNI-
2. Among them, the subjects selected from the ADNI-1 dataset
consist of 95 AD subjects, 171 MCI subjects (including 108
progressive MCI (pMCI) and 63 stable MCI (sMCI) subjects),
and 158 CN subjects, and the ADNI-2 dataset consists of 80 AD
subjects, 156 MCI subjects (including 59 pMCI and 97 sMCI
subjects) and 118 CN subjects. The all subjects list can be found
in Table S1 and Table S2 in the Supplementary Materials. The
T1-weighted (T1w) MR images of these subjects were acquired
using MPRAGE or equivalent protocols of different resolutions
with a slice thickness of 1.2 mm and have been subjected to
several preprocessing steps by the research groups belonging
to the ADNI. In detail, these MR images were preprocessed
in steps. First, geometric distortions caused by gradient models
were corrected, as were image intensity B1 nonuniformities.
Finally, an N3 histogram peak sharpening algorithm was applied
to reduce image intensity nonuniformities. Four types of clinical
scores are employed for subjects in both ADNI-1 and ADNI-2,
including Clinical Dementia Rating Sum of Boxes (CDRSB),
classic Alzheimer’s Disease Assessment Scale Cognitive sub-
scale (ADAS-Cog) with 11 items (ADAS-11), modified ADAS-
Cog with 13 items (ADAS-13), and Mini-Mental State Exami-
nation (MMSE) [26]. Table I shows the detailed statistics of all
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TABLE I
CHARACTERISTICS OF THE ADNI-1 AND ADNI-2 DATASET SUBJECTS

USED IN THIS STUDY

Note. Abbreviations: MMSE=Mini-Mental State Examination; SD=Standard Devia-
tion.

TABLE II
CHARACTERISTICS OF THE OASIS DATASET SUBJECTS

USED IN THIS STUDY

Note. Abbreviations: MMSE=Mini-Mental State Examination; SD=Standard De-
viation.

research subjects included in our method, who are divided into
three different classes:

CN: The normal control group collected by the ADNI, who
did not have a diagnosis of depression, MCI, or other dementia.
The MMSE score of these subjects is 24 to 30, with a Clinical
Dementia Rating (CDR) score of 0 [27], [28].

MCI: These subjects have no other substantial cognitive im-
pairments and are able to maintain their daily activities. The
MMSE score is between 24 and 30, and the CDR is 0.5. MCI
is a prodromal stage of AD; MCI that converts to AD is called
pMCI, and MCI that remains stable is called sMCI.

AD: The group of ADNI-collected subjects identified as hav-
ing AD who met the National Institute of Neurological and Com-
municative Disorders and Stroke and the Alzheimer’s Disease
and Related Disorders Association (NINCDS/ADRDA criteria)
for possible AD [29]. The MMSE score of AD is between 20
and 26, and the CDR is between 0.5 and 1.

2) Oasis: The OASIS dataset is a series of MRI datasets,
including OASIS-1, OASIS-2 and OASIS-3, which can be used
publicly by researchers. OASIS-3 is a dataset used to classify
and diagnose CN and AD, collecting longitudinal neuroimaging
sequences, clinical indicators, cognitive scores, and biomarkers.
The dataset includes 609 CN and 489 AD subjects, with an age
ranging from 42 to 95 years. In addition, it collects more than
2000 MR imaging sessions containing multiple sequences, such
as T1w, T2-weighted (T2w), fluid-attenuated inversion recovery
(FLAIR), resting-state blood-oxygen-level dependent (BOLD)
and diffuse-tensor imaging (DTI), and provides segmentation
files generated from MR session images processed by FreeSurfer
software. All T1w MR images are available via www.oasis-
brains.org. In our method, the T1w MR baseline images of
244 subjects in the OASIS-3 dataset are mainly selected for the
experiments, including 114 AD subjects and 130 CN subjects.
Note that in this OASIS dataset, only MMSE score is available
for all subjects. The detailed statistics of all research subjects
are shown in Table II. All subjects list can be found in Table S2
in the Supplementary Materials.

IV. METHOD

In this paper, 3D MR images are used as the data source, and
a method named NMF-TDNet is constructed based on the struc-
tural framework of PCANet to extract features to classify the

Fig. 1. Block diagram of our method.

disease type and predict the clinical score of AD. NMF-TDNet
mainly includes three steps: the first stage of NMF convolution,
the second stage of NMF convolution and the output layer
(high-order tensor construction and Tucker decomposition). The
algorithm block diagram of this paper is shown in Fig. 1. The
detailed steps are explained in the following sections.

A. MR Image Preprocessing

Many studies have shown that the main morphological and
structural abnormalities of AD occur in the gray matter (GM)
of the brain [6], [11]–[15]. Therefore, the accuracy of the
MRI-CAD system is largely dependent on the segmentation
of brain structures or tissues, such as GM or white matter
(WM) tissue sections. In this study, all of the original 3D MR
images, saved in the NIFTI format, are segmented using the
CAT12 (dbm.neuro.uni-jena.de/cat/) toolkit running on MAT-
LAB (mathworks.cn) software. CAT12 is a MATLAB toolkit
based on SPM12 (fil.ion.ucl.ac.uk/spm/) that was developed
by Ph.D. Christian Gaser and Ph.D. Robert Dahnke of the
Department of Psychiatry and Neurology at Jena University
Hospital, Germany. The tissue segmentation procedure can be
implemented via the “Segment Data” module. This step mainly
registers all 3D MR images into the MNI space (MNI152 T1
1.5 mm brain) via Dartel registration to achieve spatial standard-
ization [30], [31]. Finally, the skull tissue of each MR image is
removed, and a GM MR image of size 121× 145× 121 voxels
is obtained.

B. NMF-TDNet

In this section, we will briefly review NMF and TD and then
introduce the architecture of NMF-TDNet in detail.

1) NMF: With the advent of the era of Big Data, researchers
have begun focusing on transformation methods that can better
describe multidimensional data. In general, a good transforma-
tion method should have two basic characteristics: (1) it should
reveal some of the potential structures of the data, and (2) it
should reduce the dimensionality of the data to a certain extent.
NMF and PCA are two commonly used transformation methods.
Between them, NMF has a better local learning representation
ability than PCA. The classic NMF algorithm was published
in the well-known international journal Nature in 1999 [32].
NMF has attracted considerable attention from researchers and
is widely used in many applications, such as image coding [33],
facial recognition [34], image analysis [35], and data cluster-
ing [36]. In general, regard a nonnegative matrix P = (Pi,j)t×n
as consisting of n vectors of size t× 1. NMF can decompose
this matrix into two nonnegative matrices, B = (Bi,j)t×r and
C = (Ci,j)r×n, where r is called the rank of the NMF, which
must satisfy the inequality r(t+ n) < tn. The nonnegative ma-
tricesB andC are called the basis matrix and coefficient matrix,
respectively, which can approximately represent the nonnegative
matrix P as follows

P ≈ BC (12)
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Researchers have proposed many NMF implementation tech-
nologies [37], [38]. In this paper, the basis matrix B and
coefficient matrix C of the NMF are calculated by using the
multiplication update rule introduced in [37].⎧⎨

⎩
Bi,k ← Bi,k

∑n
j=1 Ck,jPi,j/(BC)i,j∑n

j=1 Ck,j

Ck,j ← Ck,j

∑t
i=1 Bi.kPi,j/(BC)i,j∑t

i=1 Bi,k

i = 1, 2, . . ., t; j = 1, 2, . . ., n; k = 1, 2, . . ., r

(13)

The minimum cost function corresponding to the update rule
is called the generalized KL-distance, and its specific calculation
formula is as follows

F =

t∑
i=1

n∑
j=1

[
Pi,j log

Pi,j

(BC)i,j
− Pi,j + (BC)i,j

]
(14)

It is worth noting that NMF does not allow negative elements
in the factor matrices B and C. This nonnegative constraint
also provides NMF with a reliable local learning representation
ability [34]. NMF can be applied to 3D MR image data, reduc-
ing a high-dimensional random pattern to a low-dimensional
random pattern C while keeping the information as unchanged
as possible. The basis of this simplification is the estimation of
the essential structure B in the data. Therefore, we use the basis
matrix B obtained by NMF as a set of multilevel filter banks to
convolve the image and obtain its basic features.

2) TD: TD [39], [40] is an effective data analysis technique
that plays an important role in data mining, image analysis,
signal processing, computer vision and other fields. One com-
monly used TD technique is Tucker decomposition [41], which
has played a large role in facial recognition [42], image quality
evaluation [43], noise reduction [44] and data analysis [45].

For a three-order tensorX ∈ RI×J×K , Tucker decomposition
represents X as a core tensor multiplied by a matrix along each
mode. The mathematical formula of Tucker decomposition of
X is as follows:

X ≈ G× 1A× 2B× 3C = [|G;A,B,C|]

=

P∑
p=1

Q∑
q=1

R∑
r=1

gp,q,r(ap ◦ bq ◦ cr) (15)

where A ∈ RI×P, B ∈ RJ×Q and C ∈ RK×R are called factor
matrices, which are usually orthogonal and regarded as the
principal components of each mode. ap, bq and cr are the column
vectors of matrices A, B and C, respectively. Each element
of the core tensor G ∈ RP×Q×R is represented by gp,q,r, the
symbol “◦” represents the inner product operation of two vectors,
and the symbol “[−−]” represents a concise representation of
Tucker decomposition [39]. The element representation formula
of Tucker decomposition is

xi,j,k ≈
P∑

p=1

Q∑
q=1

R∑
r=1

gp,q,r(ai,pbj,qck,r)

(i = 1, 2, . . ., I; j = 1, 2, . . ., J ; k = 1, 2, . . .,K) (16)

in which P , Q and R are the number of components of the
corresponding factor matrices A, B and C (such as the number
of column vectors). If P , Q and R are less than I , J and K,
respectively, the core tensor G can be regarded as a compressed
version of X. In some cases, the space required for generating

the compressed version is much smaller than that for the original
tensor. In formula (16), xi,j,k, ai,p, bj,q and ck,r represent the
elements of tensor X and orthogonal matrices A, B and C,
respectively.

The matrix form of the three-order tensor Trucker decompo-
sition can be expanded as follows:

X(1) ≈ AG(1)(C⊗ B)T

X(2) ≈ BG(2)(C⊗A)T

X(3) ≈ CG(3)(B⊗A)T
(17)

In general, the Tucker decomposition can be solved by well-
known methods called higher-order singular value decomposi-
tion (HOSVD) and iterative alternate least-squares (ALS) [39],
[45], [46]. The factor matrices obtained by Tucker decompo-
sition can effectively reflect the topological structure of the
original tensor. In this study, a tensor is used to store the convo-
lution results, retaining the structural information of the image
data and well performing dimensionality reduction processing,
sparse data filling and implicit relationship mining of the image
data.

3) NMF-TDNet Architecture: NMF-TDNet uses NMF in-
stead of PCA to construct multilevel filter banks to process the
input image by layer-by-layer convolution, then uses the con-
volution results to build a higher-order tensor, and finally uses
TD to reduce the data dimensionality to obtain the final image
features, which solves the data dependency and computational
efficiency problems of PCANet. NMF-TDNet mainly consists
of three steps: the first stage of NMF convolution, the second
stage of NMF convolution and the output layer. Each stage of
NMF-TDNet is described in detail as follows:

(a) First stage: As in the first stage of PCANet, suppose there
areN input 3D MR images Ii(i = 1, 2, . . ., N) of sizem× n×
d. Then, we divide each slice xi,j of Ii into p small overlapping
patches of size k1 × k2 and map all patches into vectors

xi,j = [xi,j,1, xi,j,2, . . ., xi,j,p] ∈ Rk1k2×p,

p = 1, 2, . . ., (m− k1 + 1)(n− k2 + 1)
(18)

We subtract the patch mean from each patch and obtain the
mean-removed patch vector

xi,j = [xi,j,1, xi,j,2, . . ., xi,j,p] ∈ Rk1k2×p (19)

For all slices of Ii, we can perform the same mean patch removal
and then concatenate the adjusted slices

Xi = [xi,1, xi,2, . . ., xi,d] ∈ Rdk1k2×p (20)

Then, we use the NMF implementation techniques of formula
(13) to calculate the basis matrix B and the coefficient matrix
C of Xi to learn the filters in the first stage. Assuming that the
number of filters in this stage is L1, the NMF filters of the first
stage are expressed as

W (i)1l = mat(B) ∈ Rdk1k2×L1 , l = 1, 2, . . ., L1 (21)

After convolution learning with the first stage filters, theN input
images can be expressed as

yi = (W (i)1l )
T ∗Xi, i = 1, 2, . . ., N (22)

(b) Second stage: Similar to the second stage of PCANet,
we set the boundary of the input images yi and perform zero-
padding to ensure that the size of yi is m× n. Then, we can
obtain the filters of the second stage by simply repeating the
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processes of the first stage. Specifically, we obtain all the over-
lapping patches of yi

yi,p = [yi,1, yi,2, . . ., yi,p] ∈ Rk1k2×p, p = 1, 2, . . .,mn (23)

We subtract the patch mean from each patch and obtain the
mean-removed patch vector

Yi = [yi,1, yi,2, . . ., yi,p] ∈ Rk1k2×p (24)

Then, we also use the NMF implementation techniques of for-
mula (13) to calculate the basis matrix B and the coefficient
matrix C of Yi to learn the filters in the second stage. Finally,
for each input image of the second stage, the NMF filters at this
stage are obtained through the basis matrix B

W (i)2l = mat(B) ∈ Rdk1k2×L1 , l = 1, 2, . . ., L2 (25)

After convolution learning with the second stage filters, theN ×
L1 input images can be expressed as

Ol
i = (W (i)2l )

T ∗ Yi, i = 1, 2, . . ., N × L1 (26)

(c) Output layer: After both the first and second stages are
implemented, each input 3D image ultimately yields L2 × L1

convolution results. First, the L2 × L1 convolution results are
stacked together to form a three-order tensor Ti of size m× n×
(L2L1). The Ti can be expressed as

Ti = tensor[Oi, Oi+1, Oi+2, . . ., Oi+L1L2
] (27)

Then, the Tucker decomposition (HOSVD method) of Ti is
performed

[A,B,C] = HOSV D(Ti) (28)

Where A ∈ Rm×1, B ∈ Rn×1, C ∈ RL1L2×1.
After that, the three orthogonal factor matrices obtained by

the decomposition are taken as the feature vectors of the image

F = [A,B,C] ∈ R(m+n+L1L2)×1 (29)

C. Classification Model and Regression Model

In this study, we use LIBSVM to build a support vector
classification (SVC) model and a support vector regression
(SVR) model for AD classification and clinical MMSE score
prediction [47]. LIBSVM is an open source library based on a
SVM [48]–[52] and developed by Professor Chih-Jen Lin of Tai-
wan University. It is mainly used for classification (supporting
binary classifications and multiple classifications) and regres-
sion. LIBSVM is characterized by its simplicity of operation,
ease of use, speed and efficiency, and relatively few adjustments
to the parameters involved in SVM.

V. EXPERIMENTS

A. Validation Methods and Evaluation Metrics

To obtain a reliable classification and regression evaluation
for our method, we perform 10-fold cross-validation 10 times
for the classification and regression experiments to obtain the
final performance metrics. In the regression experiment, we
calculate the correlation coefficient (CC) and root mean square
error (RMSE) between the predicted and target clinical scores.
Accuracy (ACC), sensitivity (SEN) and specificity (SPE) are
used to illustrate the classification performance of the proposed
method. In addition, many studies use the receiver operating

TABLE III
COMPARISON OF COMPUTATIONAL TIME COSTS FOR FEATURE EXTRACTION

AND CLASSIFICATION

Note. The classification time corresponds to the time required to perform 10-
fold cross-validation.

characteristic (ROC) curve to evaluate the classification of brain
diseases; therefore, in this paper, we also give the area un-
der the ROC curve (AUC) to prove the overall classification
performance of the algorithm [53]. In general, a method has
a low classification performance if its AUC value is 0.5-0.7,
a moderate performance if the value is 0.7-0.9, and a high
performance if the value is greater than 0.9.

B. Experimental Results

1) Computational Time Costs: In the era of Big Data, the
number of features can be too large, which will result in high
storage costs and long-term consumption problems during prac-
tical applications. Therefore, in this experiment, we compare the
number of features, feature extraction times and classification
times between PCANet and our proposed NMF-TDNet. For an
additional comparison, we calculate the computational time for
the Volume-based method, defined as follows. First, each MRI
is used for tissue segmentation to obtain the GM tissue. Then,
the AAL template is used to extract 90 ROIs. Finally, the GM
tissue volumes of the 90 ROIs are calculated and used as input
features. It is worth noting that both PCANet and Volume-based
methods also use LIBSVM to build a SVC model and a SVR
model for AD classification and clinical score prediction. The
computational time costs for feature extraction and classification
are summarized in Table III. In the experiments, all compared
algorithms are implemented in MATLAB R2014a, running on
a laptop with a 2.70 GHz Intel Core i7-7500 U CPU, 8.0 GB
RAM, and the Windows 10 (64-bit version) operating system.

As seen from Table III, the Volume-based method has the least
number of features, with only 90 decimals in total. The number
of features from NMF-TDNet is 282 decimals (the overlapping
patch size is 5× 5 and the number of NMF filters in each stage is
4; the parameter selection is discussed in the following section),
which is far less than the 32,768 decimals of PCANet (with an
overlapping patch size is 5× 5 and 8 PCA filters in each stage).
In terms of image feature extraction time, the difference between
the Volume-based and NMF-TDNet methods is small, but both
are faster than PCANet. Specifically, the feature extraction times
for the ADNI and OASIS datasets are respectively 10.3 s and
9.942 s for the Volume-based methods, 12.44 s and 13.8 s for
NMF-TD Net, and 20.47 s and 19.96 s for PCANet. However, the
construction of the PCA filters in PCANet depends on all input
images, while for NMF-TDNet, it does not. Therefore, as the
amount of data increases, the time required for PCANet to extract
the features will gradually increase. Since the number of features
from PCANet reaches tens of thousands of dimensions, its time
consumption for the two classification tasks is hundreds of times
that of the Volume-based method and NMF-TDNet. Specifically,
the classification time of PCANet is 50.53 s for AD vs. CN,
which is 128 times (0.394 s) that of the Volume-based method
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TABLE IV
THE CLASSIFICATION RESULTS OF THREE METHODS USING 10-FOLD CROSS-VALIDATION IN THE TASKS OF AD VS. CN AND MCI VS. CN. ACC,

SEN, SPE AND AUC ARE LISTED AS MEAN ± STANDARD DEVIATION. VALUES IN BRACKETS ARE 95% CONFIDENCE INTERVALS

The Boldface Denotes the Best Performance in Each Metric.

and 99 times (0.508 s) that of NMF-TDNet. In classifying MCI
from CN, the classification time of PCANet (78.22 s) is 304
times (0.257 s) that of the Volume-based method and 116 times
(0.674 s) that of NMF-TDNet. This indicates that, compared
with PCANet, using our proposed NMF-TDNet method to
extract image features can effectively improve computational
efficiency, reduce storage costs and time consumption.

2) Classification Results: In this paper, the results extracted
by NMF-TDNet are used as the input features of an SVM
classifier for AD, CN and MCI classification. It is worth noting
that the performance evaluation concerns the feature extraction
method rather than the design of the classifier. To provide a more
reliable classification evaluation, the SVC model was trained on
one complete dataset, and then tested on the other independent
dataset. Specifically, we conducted four group of experiments
for verification. (a) The SVC model was trained on ADNI-1 and
tested on ADNI-2. (b) The SVC model was trained on ADNI-2
and tested on ADNI-1(reversed the training and testing sets
of (a)). (c) SVC model was trained on ADNI-1 and tested on
OASIS. (d) The SVC model was trained on OASIS and tested
on ADNI-1(reversed the training and testing sets of (c)). The
specific classification results of experiments (a)-(d) are shown in
Table IV. We report the mean and standard deviation of 10-fold
cross-validation results in each metric with the 95% confidence
interval in this table.

As seen from Table IV, although the number of NMF-TDNet
features (282 decimals) is far less than that PCANet features
(32,768 decimals), our method achieves superior classification
performance that PCANet for the various classification tasks,
and also far higher than the Volume-based method. Specifically,
as can be seen from Table IV(a), for the classification of AD and
CN, NMF-TDNet achieved an ACC of 95.61%, SEN of 100%,
SPE of 92.63% and AUC of 98.26%, which are higher than the
classification results of the PCANet (ACC was 82.42%, SEN
was 76%, SPE was 86.78% and AUC was 90.49%) and Volume-
based method (ACC was 89.24%, SEN was 87.75%, SPE was
90.25% and AUC was 96.01%). For classifying MCI from CN,
compared with those of the PCANet and Volume-based method,
the ACC, SEN, SPE and AUC of NMF-TDNet improved by
25.69% vs. 25.11%, 19.49% vs. 23.91%, 33.9% vs. 26.69%
and 28.65% vs. 24.36%, respectively. To study the influence of
the training data as well as the generalizability of our proposed
method, we also reversed the training and testing sets of (a).
Specifically, we first train the SVC model using all the data from
the ADNI-2 dataset and then test the model performance with
the ADNI-1 dataset. The classification results are summarized
in Table IV(b). As shown in Table IV(b), we can observe that
our proposed method still outperforms the competing method in
this scenario. In addition, by comparing the results achieved by

Fig. 2. Comparison of the ROC curves with three methods for classi-
fying (a) AD vs. CN classification, and (b) MCI vs. CN classification.

NMF-TDNet on Table IV(a) and (b), we can have the following
observations. 1) the diagnostic results are comparable (e.g., in
AD vs. CN, 95.61% vs. 94.11% for ACC, and 98.26% vs.
99.2% for AUC. In MCI vs. CN, 89.16% vs. 85.78% for ACC,
and 97.81% vs. 94.46% for AUC). 2) the model trained on
ADNI-1 dataset is slightly better, possibly due to the fact that
more training subjects are available in ADNI-1 dataset than
in ADNI-2 dataset. In conclusion, these experiments suggest
that our proposed method has good generalization capacity in
sMRI-based AD diagnosis.

In the task of AD vs. CN classification, we also used ADNI-1
and OASIS datasets to do two group of experiments to verify. In
the first group of experiments, we first train the SVC model using
all the data from the ADNI-1 dataset and then test the model
performance with the OASIS dataset. In the second group of
experiments, we also reversed the training and testing sets. The
specific classification results in Table IV(c) and (d). Similarly,
it can be seen from the experimental results that our proposed
method has good generalization capacity in sMRI-based AD
diagnosis (e.g., NMF-TDNet achieved an ACC of 94.06% vs.
94.66%, SEN of 100% vs. 98.95%, SPE of 88.85% vs. 92.09%
and AUC of 99.77% vs. 99.42%).

In addition, we also plot the ROC curves of three different
methods for classification between AD vs. CN and MCI vs.
CN, as shown in Figs. 2 and 3. From the results, it is clear that
the NMF-TDNet method outperforms the PCANet and Volume-
based methods in all experiments.
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Fig. 3. Comparison of the ROC curves with three methods in the tasks
of AD vs. CN classification. Left: The SVC model trained on ADNI-1 and
tested on OASIS. Right: The SVC model trained on OASIS and tested
on ADNI-1.

TABLE V
CLASSIFICATION RESULTS OF NMF-TDNET METHOD USING 10-FOLD
CROSS-VALIDATION IN THE TASKS OF SMCI VS. PMCI ON THE ADNI-2

DATASET(ADNI-1 AS THE TRAINING SET) AND THE ADNI-1
DATASET(ADNI-2 AS THE TRAINING SET)

ACC, SEN, SPE and AUC Are Listed as Mean ± Standard Deviation. Values in
Brackets Are 95% Confidence Intervals.

Studies have found that MRI findings shows a high correlation
with the progression from MCI to AD [54]. However, the patho-
logical variations between sMCI and pMCI that can be detected
by MRI are subtle. This subtle difference is also accompanied
by large intersubject variability and age-related changes, which
makes MRI-based predictions of sMCI and pMCI challenging
tasks. In this study, we also conducted an experiment to dis-
tinguish sMCI from pMCI. Firstly, we still use the data from
ADNI-1 as the training set, while the data from ADNI-2 are
used as an independent testing set. Thus, we have a total of
171 MCI subjects from ADNI-1 and 156 MCI subjects from
ADNI-2. The experimental results are shown in Table V. In most
research methods, the classification accuracy in discriminating
sMCI and pMCI is in the range of 56-82% [55]–[58]. In the sMCI
vs. pMCI classification task, Our method NMF-TDNet achieved
ACC of 79.17%, SEN of 73.2%, SPE of 88.89% and AUC of
0.899, indicating its potential capability of diagnosing sMCI vs.
pMCI. Similarly, in order to evaluate the generalization ability
of our method, we also switched the training and testing sets in
the sMCI and pMCI classification tasks, which can be seen that
the diagnostic results are comparable (e.g., 79.17% vs. 77.60%
for ACC, 73.2% vs. 69.84% for SEN, 88.98% vs. 82.13% for
SPE, and 0.899 vs. 0.828 for AUC).

In the above experiments, we perform 10-fold cross-
validation 10 times to obtain the final classification results. In
order to give more reliable classification evaluation, we apply
another verification method (leave-one-out cross-validation) to
verify the classification results. The classification results are
summarized in Table VI((a) The SVC model was trained on
ADNI-1 and tested on the ADNI-2. (b) Reversed the training and
testing sets of (a). (c) The SVC model was trained on ADNI-1
and tested on the OASIS. and (d) Reversed the training and
testing sets of (c)). Comparing the results of Tables IV, V and
VI, it can also be verified that our proposed NMF-TDNet method
has good generalizability for AD diagnosis.

3) Regression Results: We evaluated the regression perfor-
mance through the estimation of clinical scores (i.e., ADAS-11,
ADAS-13 and MMSE) of the 3D MR images in the three

TABLE VI
CLASSIFICATION RESULTS OF NMF-TDNET METHOD USING

LEAVE-ONE-OUT CROSS-VALIDATION IN THE TASKS OF AD VS. CN, MCI VS.
CN AND SMCI VS. PMCI

ACC, SEN and SPE Are Listed as Mean± Standard Deviation. Values in Brackets
Are 95% Confidence Intervals.

datasets. To evaluate the generalization ability of model, we
use subjects from ADNI-1 as the training data, while subjects
from ADNI-2 and OASIS as independent testing data. In the
first group of experiments, we train a model for three clinical
scores (i.e., MMSE, ADAS-11 and ADAS-13) regression on
ADNI-1, and test this model on ADNI-2. In the second group of
experiments, we train a model for MMSE score regression on
ADNI-1, and test it on OASIS. The CC and RMSE values for the
first group of experiments are show in Table VII(a). Specifically,
in the prediction of MMSE, ADAS-11 and ADAS-13 scores for
AD vs. CN, our NMF-TDNet method obtained the RMSEs of
2.854, 6.483 and 8.411, respectively, and the CCs of 0.761, 0.725
and 0.789, respectively. It can be seen from the experimental
results, although NMF-TDNet yields far fewer features than
PCANet, the prediction results of NMF-TDNet outperforms that
of PCANet. For MCI vs. CN, NMF-TDNet and Volume-based
method obtained superior CCs (0.343 vs. 0.330(MMSE), 0.413
vs. 0.429(ADAS-11), and 0.439 vs. 0.467(ADAS-13)) and RM-
SEs (1.943 vs. 2.08(MMSE), 4.416 vs. 4.668(ADAS-11), and
6.769 vs. 7.245(ADAS-13)) than the PCANet. As seen from
Table VII(b), in the prediction of the MMSE score for AD
vs. CN, NMF-TDNet and PCANet obtained CCs of 0.611 and
0.603, respectively, and RMSEs of 3.239 and 3.268, respectively.
Both methods are superior to the Volume-based method (CC
and RMSE of 0.527 and 3.399, respectively). Similarly, we also
compared the time required to perform clinical scores prediction
by all methods. As seen from Table VII, the time costs of
PCANet, which are much higher than those of the Volume-based
and NMF-TDNet methods. Furthermore, we performed a t-test
to compare the CCs and RMSEs between our proposed method
and the other compared methods (Volume-based and PCANet)
separately, as shown in Table VII. We can see that most of the
p-values for the regression tasks are less than 0.05. These results
also validate the efficacy of our proposed method in estimating
the clinical scores.

4) Parameter Analysis: The important parameters of NMF-
TDNet include the overlapping patch size and the number of
NMF filters in each stage. Therefore, we conduct experiments in
this section to evaluate the impact of these important parameters
on the performance of NMF-TDNet for various classification
and regression tasks. For the classification of AD and CN, we
again first train the model using all the data from the ADNI-1
dataset and then test the performance with the OASIS and ADNI-
2 dataset. For MCI vs. CN and sMCI vs. pMCI, the model is
trained on the ADNI-1 dataset and tested on the ADNI-2 dataset.
Fig. 4(a)–(d) shows the results of the various classification
task experiments using different parameters. According to the
classification results, when each stage includes 4 filters and the
patch size is 5× 5, NMF-TDNet obtains the best classification
performance for both classification tasks.
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TABLE VII
COMPARISON OF THE REGRESSION RESULTS OF DIFFERENT METHODS. (A) THE SVR MODEL WAS TRAINED ON ADNI-1 AND TESTED ON THE ADNI-2.

(B) THE SVR MODEL WAS TRAINED ON ADNI-1 AND TESTED ON THE OASIS. THE NUMBER IN PARENTHESES IS A STANDARD DEVIATION. THE ASTERISK
INDICATES STATISTICALLY SIGNIFICANT DIFFERENCE (P<0.05) COMPARED WITH THE PERFORMANCE BASED ON OUR METHOD

The Boldface Denotes the Best Performance in Each Metric.

Fig. 4. Comparison of classification accuracy with different parameters
for various classification tasks. The x-axis represents the patch sizes,
and the y-axis represents the classification accuracy.

5) Comparison With State-of-The-Art Methods: With the de-
velopment of machine learning and deep learning, conventional
learning-based and deep learning-based methods have been ap-
plied to AD diagnosis. Among them, the conventional learning-
based method uses image features (such as GM density map,
cortical thickness or hippocampal shape measurement) as the
input of the classifier, so it is divided into two independent stages,
namely the feature extraction stage and the classification stage.
Deep learning-based methods is to extract the deep features of
the image in a data-driven way for brain disease diagnosis, which

is end-to-end learning. In Table VIII, our method is compared
with the results of several methods, including six conventional
learning-based and six deep learning-based methods. Like many
studies [56], [58], [59], [67], in order to ensure the classification
performance of each method, the classification results of each
method in the table are the best results obtained through ex-
periments on its original selected dataset(ADNI). That is, these
methods were performed with the varying number of subjects,
and also the varying partition of training and testing samples,
and the definition of pMCI/sMCI may be partially different
as well. Although the image data selected by all experimental
methods are not exactly the same, the ADNI research group
has carried out quality control and preprocessing on the image
data. In addition, compared with studies using only partial sMRI
data of ADNI-1 [6], [7], [60], [61], [64], [67], our method and
the method proposed by Lian et al. [56] used more subjects
for evaluation (sMRI data from ADNI-1 and ADNI-2), And
used a more challenging evaluation protocol (i.e., independent
training and testing sets), which should be more challenging but
fairer. Therefore, although the results in Table VIII are may not
completely comparable, we can roughly comparing our study
with these state-of-the-art methods to verify the efficacy of our
proposed method.

Firstly, the classification accuracy of our method is compared
with the results of conventional learning-based methods that
use sMRI data as the research subject and SVM as the classifier
to classify AD versus CN, MCI versus CN and sMCI versus
pMCI. Specifically, in AD vs. CN, our method achieved a
classification accuracy of 95.61%, an improvement of 11.48%
(vs. Hu et al. [7]), 7.12% (vs. Khedher et al. [62]), 1.24%
(vs. Liu et al. [63]), 1.81% (vs. Zhu et al. [6]) and 10.81%
(vs. Zhang et al. [64]). Compared with the methods of Peng
et al. [59], our classification accuracy is slightly lower by
0.49%. The reason possibly due to the fact that the imaging
mode (MRI and PET images) and SNP used by this methods
at the same time, while our method only has MRI images.
For discriminating MCI from CN, we achieved a classification
accuracy of 89.16%, an improvement of 8.86% (vs. Peng et
al. [59]), 7.27% (vs. Khedher et al. [62]), 10.36% (vs. Liu
et al. [63]), 9.46% (vs. Zhu et al. [6]) and 8.37% (vs. Zhang
et al. [64]). Finally, for classifying sMCI vs pMCI, the accuracy
of NMF-TDNet improved by 2.48% (vs. Hu et al. [7]), 11.34%
(vs. Liu et al. [63]), 8.37% (vs. Zhu et al. [6]) and 17.17% (vs.
Zhang et al. [64]). In addition, we noticed that Padilla et al.
also used NMF to extract image features for AD disease diag-
nosis [8], [9]. Specifically, Padilla et al. proposed a novel CAD
technology, which is based on functional brain images (SPECT
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TABLE VIII
COMPARISON WITH STATE-OF-THE-ART METHODS

Fig. 5. Convolution results of different filters. (a) Convolution results of
the NMF filters for the first stage (rows 1) and second stage (rows 2-5).
(b) Convolution results of the PCA filters for the first stage (rows 1) and
second stage (rows 2-5).

images and PET images) for early diagnosis of AD. Specifically,
firstly, the functional brain image is analyzed by applying the
Fisher discriminant ratio (FDR) for feature selection and NMF
for feature extraction of relevant components of each subject.
Then, the resulting NMF-transformed set of data is classified
by SVM classifier. The difference between literature [8] and
literature [9] is that the SVM classifier in literature [9] has
bounds of confidence for decision. For AD vs. CN classification,
the proposed NMF+SVM method achieved ACC of 94.9% (in
the literature [8]), 91.42% and 86.59% (in the literature [9]),
respectively.

In addition, our method is also compared with deep learning-
based methods. From the table we can see that our method can
achieve better classification accuracy in distinguishing various
classification tasks, whether it is compared with the conventional
learning-based method or the deep learning-based method.

VI. DISCUSSION

To better compare the differences between the PCA filters
and the NMF filters, we visualize the convolution results of the
first and second stages of PCANet and NMF-TDNet in Fig. 5.

The images show that convolution results of the NMF filters
retain more image detail information than those of the PCA
filters. The most intuitive manifestation of this difference in the
pictures is that the image becomes blurred. Compared with the
corresponding panels in Fig. 5(a), the image details of the fourth,
sixth, tenth and fourteenth convolution results in Fig. 5(b) are
very blurry (from top to bottom and then from left to right).

Based on these observations, we also constructed a method
with the same network structure as NMF-TDNet to classify
and diagnose AD, referred to as PCA-TDNet. The first and
second stages of PCA-TDNet use PCA filters, while the overall
processes of the three stages are the same as those of NMF-
TDNet. When performing the classification experiments with
this PCA-TDNet, the classification model is also trained with
ADNI-1 and tested with ADNI-2 and OASIS. The results are
shown in Fig. 6, showing that in the classification of AD and
CN, the average classification accuracy of PCA-TDNet for all
sets of parameters reaches a minimum of 53.28% (57.53%) and
a maximum of 59.96% (69.75%), which is far less than the
corresponding classification accuracy of NMF-TDNet (ACC of
94.06% or 95.61%). For MCI vs. CN, the average classification
accuracy of PCA-TDNet reaches a minimum of 52.63% and a
maximum of 56.72%, which is also far less than the correspond-
ing classification accuracy of NMF-TDNet (ACC of 89.16%).

In addition, another difference between the PCA filters and
NMF filters is data dependence. Specifically, the PCA filters
need to be learned by finding the covariance of all images, while
the NMF filters do not need to be learned. For example, when
using PCANet for the classification experiments, it is assumed
that the PCA filters in the model training stage only use the data
learned from the ADNI-1 dataset, and filters of the test stage
use the data learned from the OASIS dataset. This reduces the
classification accuracy for the AD and CN classification task
from 79.71% to 53.28%. We believe that PCANet suffers from
an underfitting problem.

Last but not least, we have also studied the brain regions
associated with AD. Firstly, we calculate the weight of each
NMF-TDNet feature value by ReliefF method [69], and the
specific results are shown in Fig. 7. It can be seen from Fig. 7
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Fig. 6. Classification accuracy results of PCA-TDNet. The x-axis rep-
resents the patch sizes, and the y-axis represents the classification
accuracy.

Fig. 7. The weight of each NMF-TDNet feature obtained by the ReliefF
method.

Fig. 8. The top 15 brain regions associated with AD estimated using
the AoIs method in tasks of AD vs. CN classification (top) and MCI vs.
CN classification (bottom).

that the 273-th value has the largest weight. Therefore, we can
assume that this value contains relevant information about the
structure of the AD. Then, we use the regional visualization
technology-AoIs developed in the literature [65] to estimate the
brain regions where the value is related to AD progression. Fig. 8
shows the top 15 brain regions associated with AD estimated
using the AoIs method in the AD vs. CN and MCI vs. CN
classification tasks. In Fig. 8, we can see that in the AD vs. CN
classification, the relevant brain areas are mainly concentrated
in the temporal lobe, frontal lobe and olfactory cortex. For MCI
vs. CN, it is also concentrated in the temporal lobe, frontal
lobe and olfactory cortex, but it is also more distributed in
the caudate nucleus and occipital lobe. These brain areas have
also been verified in the literature [63], [65]. At the same time,

we also use this feature to perform regression experiments on
the ADAS-11 and ADAS-13 clinical scores. Specifically, when
predicting ADAS-11 and ADAS-13 scores for AD vs. CN, this
feature obtained RMSEs of 9.669 and 13.858, and CCs of 0.553
and 0.607, respectively. For MCI vs. CN, the CC and RMSE
of ADAS-11 are 0.303 and 4.653, respectively, and the CC and
RMSE of ADAS-13 are 0.355 and 7.002, respectively.

There are some aspects of our method that we can further
improve in future work. The first improvement concerns the
unimodality of the input features. When extracting features, we
only consider the MR images from the ADNI/OASIS datasets.
However, the images collected by the ADNI/OASIS dataset
are multimodal, including, for example, PET as well as MRI.
Therefore, we can combine images of multiple modalities and
extract diverse input features. Second, we can also use this
method to classify various forms of dementia, rather than AD
alone. Last, we now extract the features of each 3D MR image by
gradually processing and then combining all 2D slices. In future
work, we can improve our method to more directly process 3D
MR images.

VII. CONCLUSION

In this work, to overcome the large number of features and
the data dependence of the PCA filters that limit PCANet, we
propose a method named NMF-TDNet based on the network
structure of PCANet. NMF-TDNet uses NMF instead of PCA
to construct multilevel filter banks to process the input image
by layer-wise convolution, then uses the convolution results
to build a higher-order tensor, and then uses TD to reduce
the data dimensionality, producing the final image features.
Finally, our method use these features as the input of the SVM
for AD classification diagnosis and clinical score prediction.
On the ADNI-1 and ADNI-2 datasets, we conducted clinical
scores (MMSE, ADAS-11 and ADAS-13) prediction and cat-
egory label discrimination experiments. And on the ADNI-1
and OASIS datasets, the clinical score (MMSE) prediction and
category label distinction were performed. The experimental
results show that although NMF-TDNet yields far fewer features
than PCANet, using NMF-TDNet features as input achieved
superior performance than using PCANet features as input.
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